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1. Mathematical interpretation and implementation 

approach 

1.1  Mathematical derivation of RediNet 

In the section "The architecture of RediNet" in the main article, we gave some 

mathematical representations of the solutions for solving Fourier series primitive 

function from parameter space. Due to the limitation of writing length, these 

explanations mainly emphasize conclusive formulations, which leads to some skip-

overs. Here, we present the relevant rigorous mathematical procedure in detail. 

The essence of the problem is: a multi-dimensional parameter space 𝑃 is given, 

which can be recognized as a real-valued and non-negative multi-dimensional matrix. 

The values 𝑎𝑙1,⋯,𝑙𝑁
  of this matrix are the moduli of the coefficients of a multi-

dimensional Fourier series, where 𝑙1, ⋯ , 𝑙𝑁 are the matrix element order numbers and 

at the same time the Fourier series term order numbers. It is required to find a 

corresponding multi-dimensional primitive function, whose moduli are required to be 

all 1, and whose angle function 𝑆 should fulfill the criterion that the moduli of the 

coefficients of this primitive function's Fourier series equal to the moduli of the 𝑎𝑙1,⋯,𝑙𝑁
. 

Let us start from the simplest case. Suppose that we only need to modulate a single 

multi-dimensional structured light beam, and this structured light corresponds to 𝑁 

independent structured light properties, such as 𝑥, 𝑦, 𝑧 shiftings, topological charge 

𝑙 , etc., as mentioned in the main article. Also, note that the CPFs α𝑖(𝑥, 𝑦) 

corresponding to these structured light properties are linear functions of the modulation 

parameter, and independent with each other. At this point, the phase pattern of 

modulating this multi-dimensional structured light beam should be the superposition of 

the multiplication of the CPFs and their modulation parameters, i.e: 
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Where 𝛼𝑖(𝑥, 𝑦)  is the corresponding CPFs. Interpretively, the term on the far right 

∑ 𝛼𝑖(𝑥, 𝑦)𝑙𝑖
𝑁
𝑖=1   can be regarded as a function Φ(𝑙1, ⋯ , 𝑙𝑁)  of the modulation 

parameter 𝑙𝑖 , and can also be understood as a 2D complex amplitude distribution 

𝜑(𝑥, 𝑦) in terms of the underlying independent variables 𝑥 and 𝑦. 

Next, based on the idea of designing Dammann gratings, we consider the overall 

modulation phase for simultaneously generating multiple structured light beams as a 

weighted sum of multiple separated modulation phases corresponding to the individual 

structured light beams: 
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where 𝑎𝑙1,⋯,𝑙𝑁
  are the complex weights, whose squared moduli represent the 

intensity of each beam, and their angles are undetermined. These angles are crucial to 

exp[𝑗φ(𝑥, 𝑦)] because it is hard and ill-posed to realize our target that for every 𝑥 and 



𝑦, the right part of Eq. S2 could offer a perfect value that has a modulus of 1, which is 

required by the left part of Eq. S2.  

As mentioned in the main text, the primitive function 𝑆(𝑡1, ⋯ , 𝑡𝑁) , strictly 

speaking is the angle part of the primitive function taking the values in parameter space 

as the Fourier series coefficients’ moduli. We give its Fourier series expansion from the 

direct mathematical definition: 
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Formally, this equation is very similar to the Eq. S2. If there is α𝑖(𝑥, 𝑦) = 𝑡𝑖, then 

 1exp[ ( , )] exp[ ( ( , ),..., ( , ))]Nj x y jS x y x y   . (S4) 

This means that once we have the CPF α𝑖(𝑥, 𝑦)  and the solved 𝑆(𝑡1, ⋯ , 𝑡𝑁) 

through the neural network, we can evaluate 𝛼𝑖(𝑥, 𝑦) , and further use them as 

coordinates 𝑡𝑖 to evaluate 𝑆(𝑡1, ⋯ , 𝑡𝑁). This process is similar to composite function 

evaluation. 

  



1.2 Acquisition of the dataset 

In order to train a neural network, datasets, or say the ground truth of the input and 

output of the network are needed. The inputs and outputs of RediNet's neural network 

are the 3D parameter space (with a resolution of 83) and the 3D primitive function (the 

angle of the Fourier series’ primitive function) as mentioned in the main text. In fact, 

the process from the given 3D parameter space to the primitive function is a difficult 

problem, whereas its inverse problem is simple because given an arbitrary 3D function, 

one can directly obtain its parameter space by Fourier series expansion. After tests, we 

found the results obtained by this method were unsatisfactory. 

 For this issue, here we use the following process: firstly, in a parameter space 

whose elements are all equal to zero, a part of the elements (at least 2, and at most 32) 

are randomly chosen and assigned to 1. Then, we use an iterative method to compute 

the primitive function, which can guarantee two things that the primitive function 𝑆 is 

real-valued are all 1 and the Fourier series coefficients of the primitive function is very 

close to the distribution of the parameter space. Finally the angle of the iteratively 

computed complex primitive function is extracted and used as a data set with the 

corresponding target parameter space. 

The flow chart of this iterative algorithm is shown in Fig. S1: 

 

Figure S1. Iteration flow chart for generating the primitive function 𝑆 in 

preparing dataset 

 

Here, 𝑃𝑡𝑎𝑟𝑔𝑒𝑡  is the target parameter space, 𝑆  is the primitive function solved 

iteratively, and 𝑊  is a momentum-like variable used to store the results of the 

iterations. δ is a very small value to avoid a zero denominator. 𝑏 controls the speed 

of convergence of the iterations; in our practice, 𝑏 is taken to be 1, and values between 

0.7 and 1 could ensure the iteration fast and effective. The final outputs of this iterative 

algorithm, 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑆, are saved as .mat files by the commercial software Matlab.  



1.3 Structure and training of neural network: 

The architecture of the neural network in RediNet is relatively common. It is shown 

in the fig. S2 below: 

 

Figure. S2 Architecture of the neural network of RediNet. a, The architecture of 

asymmetric 3DUnet. The size of each network block and the process between them are 

labeled. An example of input and output data are illustrated. b, The res-block 

architecture. Conv3d, 3D convolution. BN, batch normalization. ReLU, rectified linear 

unit. Numbers in the brackets are the kernel sizes and strides. 

 

In Fig. S2a, it can be seen that the 83 input are downsampled 2 times to 23, while 

the channel increases to 512. Subsequently, the opposite operation is performed, 

upsampling to 643 while compressing the number of channels, finally outputting a 

single channel data. The structure of this network is not completely symmetrical due to 

the different sizes of the input and output data. In the network, downsampling is 

processed using the Maxpool3d function with a kernel size of 2 and a stride of 2. 

Upsampling is processed using the ConvTranspose3d function with a kernel size of 

2 and a stride of 2. Res-block can make the training of deep neural networks feasible, 

so it is applied to our network in a structure shown in Fig. S2b. Skip connections are 

added between the downsampling and the corresponding upsampling, allowing the 

original details and overall characteristics to be considered simultaneously.  

In the training of the neural network, we divided the training into 4 sectors. The 

descending curve of the loss function during training is shown in Fig. S3: 

(1) The loss function used is ∑ 0.5(𝑥 − 𝑥)2
/𝑁, classical L2 Loss. The training set 

is generated using the above method, comprising 50000 pairs. Training is performed 

for 79 epochs. 

(2) The same loss function is used. The training set is regenerated using the above 



method with 300000 pairs. Training is performed for 31 epochs. 

(3) The loss function used is ∑ 0.5(1 − cos(𝑥 − 𝑥))/𝑁 . This loss function 

adequately reflects the property of the output of the neural network as an angle value, 

i.e., 0 and 2π are the same value, while 0.01π and 1.99π are very close. The dataset 

used is a 50000-pair set regenerated using the method described above. 20 rounds of 

training were performed. 

(4) The same loss function is used. The training set is regenerated using the above 

method with 300000 pairs. Training is performed for 43 epochs. 

 

Figure. S3 Value of the loss function with the epochs. The second sector training 

starts with the trained network parameters of the first sector. 

 

The performance improvement brought by the latter loss function is obvious, 

especially beneficial for the diffractive efficiency. Taking the planar equal-energy four 

foci as an example, it can be found that the noise point vanishes and the contrast ratio 

becomes higher. Besides, the phase skips around 0 and 2π becomes precise and clear.  

 

Figure. S4 Phase CGH using different loss functions. a, Result of ∑ 0.5(𝑥 − 𝑥̂)2
/𝑁. 

b, Result of ∑ 0.5(1 − cos(𝑥 − 𝑥̂))/𝑁 

 

The number of network parameters is 22.4 million. The parameter file of the neural 

network, codes for training, codes used to generate the dataset, and some of the dataset 

examples have been uploaded to https://github.com/LiHengyang1/RediNet. 

 

https://github.com/LiHengyang1/RediNet


1.4 Characteristic phase functions (CPFs) of structure light 

Theoretically, any structured lights that can be generated by a single pure phase 

CGH corresponds to a CPF. A CPF can be inserted into RediNet if it can be written as 

a linear function of the modulation parameters. Some examples of CPFs have been 

given in the main text of the article, and here we list more formulations of commonly 

used CPFs. 

 
Table S1  The CPFs of structured lights 

Structured light, parameter CPF expression 

x-shifting, low NA, 𝛥𝑥 𝑘𝑥/𝑧(𝛥𝑥) 

y-shifting, low NA, 𝛥𝑦 𝑘𝑦/𝑧(𝛥𝑦) 

z-defocusing, low NA, 𝛥𝑧 𝑘𝑟2/(2𝑧2)(𝛥𝑧) 

x-shifting, high NA, 𝛥𝑥 𝑘cos𝜑sin𝜃(𝛥𝑥) 

y-shifting, high NA, 𝛥𝑦 𝑘sin𝜑sin𝜃(𝛥𝑦) 

z-defocusing, high NA, 𝛥𝑧 𝑘cos𝜃(𝛥𝑧) 

Bessel beam, 𝜙 𝑘𝑟(𝜙) 

Airy beam, 𝑏 (𝑥3 + 𝑦3)(𝑏) 

OAM of vortex beam, 𝑙 𝜃(𝑙) 

Radius of ring focus, 𝛥𝑟 𝑘𝑟/𝑓(𝛥𝑟) 

Snowflake CPF1, 𝑢 [6(sgn(sin(8𝑟) − 0.1)) + 1.5𝑟](𝑢) 

Snowflake CPF2, 𝑣 [0.8𝑟sin(6𝜃)](𝑣) 

 

 

 

 

 

 

 

 

 



1.5 Evaluation on 𝑹𝑴𝑺𝑬 and diffractive efficiency 

𝑅𝑀𝑆𝐸 in the article has two implementation forms. One is experimental-oriented, 

like the evaluation of the intensity of the 2D focus array in Fig. 3a in the main text. 

Here 𝑅𝑀𝑆𝐸 is  
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where 𝑁 is the total number of foci, 𝑦𝑖 is the measured value and 𝑦̅ is the average 

of all 𝑦𝑖. The other is used to directly evaluate the performance of the network like that 

in the Fig. 6d in the main text. Considering the output of the network is the primitive 

function, we expanded it into Fourier series in order to evaluate the variation between 

the Fourier series coefficients and the values in the given parameter space. The 𝑅𝑀𝑆𝐸 

here is  
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where 𝛼𝑙1,𝑙2,𝑙3 are the Fourier series coefficients, 𝐴𝑙1,𝑙2,𝑙2 is the corresponding target 

value in the given parameter space as ground truth, and 𝛺 is the set of all coordinates 

that take nonzero values in the given parameter space.  

Likely, the diffraction efficiency is also based on the coefficients expanded from 

the primitive function, defined as 
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In view of the analysis on Eq. 1 and Eq. 2 in the main text, it is precise to use 

|𝛼𝑙1,𝑙2,𝑙3
|

2
 as the energy proportion of every sub-beam in an array. 

  



2. Experiment and data processing 

2.1. Experimental setup 

We built the optical path shown in Fig. S5. We used a collimated fundamental mode 

Gaussian beam with a wavelength of 1064 nm. It is an Nd:YAG laser and coupled into 

a single-mode fiber, and the M2 factor of the output laser is smaller than 1.2. The beam 

was expanded to about 4.4 mm Gaussian radius and only one linear polarization 

component was retained. The main body of the optical path was a Mach–Zehnder 

interferometer, where one arm (pink) was modulated by the spatial light modulator 

(SLM) and attenuated using a set of half wave plate and polarized beam splitter. The 

lens (𝑓 = 400 𝑚𝑚) had the SLM and the camera in the front and back focal plane. 

The other arm (green) was used as a reference beam, so the interference pattern can be 

captured. If the phase distribution at the Fourier plane is needed, it can be solved using 

the interference fringe pattern. 

Figure. S5 Experimental setup. a, Schematic picture. b, Real setup picture. BE: beam 

expander, PBS: polarized beam splitter, BS: beam splitter, SLM: spatial light modulator, 

HWP: half wave plate, NDF: neutral density filter, R: reflective mirror.  

  



2.2 Phase pattern obtained with single interferometric fringe picture 

In our Mach-Zehnder interferometer, the reference beam is a collimated Gaussian 

beam that can be roughly considered as an inclined plane wave. The interference picture 

is captured by a camera, and using this single intensity distribution, an accurate complex 

amplitude distribution of the modulated light is obtained. The principle and procedure 

are illustrated as follows: 

Suppose that the complex amplitude of the signal light is 𝑈 = 𝐴exp(𝑗𝜑), and in 

addition there is a reference light with complex amplitude 𝑉 = 𝐵exp (𝑗(𝑘𝑥𝑥 + 𝑘𝑦𝑦)), 

a plane wave with wavevector direction (𝑘𝑥 , 𝑘𝑦). The complex amplitude of the light 

field on the camera is then: 
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where 𝜙 is the phase carried by(1 + 𝐴/𝐵exp (𝑗 (𝜑 − (𝑘𝑥𝑥 + 𝑘𝑦𝑦)))), not used in 

followed content. The amplitude, i.e., the square root of the intensity captured by the 

camera, is: 
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Perform a two-dimensional Fourier transform on it, and assume ℑ{𝑈} = 𝑢. 
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It is obvious that the first term is centered on the frequency plane, while the last two 

terms are symmetric with respect to the center point about the frequency plane. 

Accordingly, when 𝑘𝑥  and 𝑘𝑦  are relatively large, we can filter out 𝑢(ξ − 𝑘𝑥, η −



𝑘𝑦) , shift it to the center of the frequency plane, and then do the inverse Fourier 

transform to get the 𝑈 = 𝐴exp(𝑗φ), i.e., 

   1 ,x x y yU u k k k k      . (S11) 

In this way, the complex amplitude of 𝑈 is recovered (in which the phase part is 

what we are mainly interested). The entire process uses only one interference fringe 

map |𝑊|. 

A flow chart is used to represent the process: 

 

Figure. S6 Flow chart of obtaining complex amplitude from a single fringe pattern. a, 

Fringe pattern captured with camera. b, Pattern of spatial frequency. c, Filtered spatial 

frequency that only 𝑢(ξ − 𝑘𝑥, η − 𝑘𝑦)  is left. d, Filtered spatial frequency that is 

shifted to the center. e and f, the amplitude and phase of the signal beam. 

 

 

 


